math-formula

Markdown “Conflicts” test

$_mC_n$ is an old symbol for $\binom{n}{m}$

$ wanna~~tie~~me~up\ or$ strike through me?

$a^{b^c}c_{b_a}$

$E=mc^2$ $a_b$ $a*b$

Delimeter test

$E=mc^2$ means \(m=\dfrac{E}{c^2}\)

To break, or not to break, that is the question:

$\left(\begin{matrix}1 & x_0 & x_0^2 & ... & x_0^n \\1 & x_1 & x_1^2 & ... & x_1^n \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & ... & x_n^n\\\end{matrix}\right)\left(\begin{matrix}a_0 \\a_1 \\\vdots \\a \\\end{matrix}\right)=\left(\begin{matrix}y_0 \\y_1 \\\vdots \\y_n \\\end{matrix}\right)$

$$\left(\begin{matrix}1 & x_0 & x_0^2 & ... & x_0^n \\1 & x_1 & x_1^2 & ... & x_1^n \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & ... & x_n^n\\\end{matrix}\right)\left(\begin{matrix}a_0 \\a_1 \\\vdots \\a \\\end{matrix}\right)=\left(\begin{matrix}y_0 \\y_1 \\\vdots \\y_n \\\end{matrix}\right)$$

$$\left(\begin{matrix}
1 & x_0 & x_0^2 & … & x_0^n \
1 & x_1 & x_1^2 & … & x_1^n \
\vdots & \vdots & \vdots & \ddots & \vdots \
1 & x_n & x_n^2 & … & x_n^n\
\end{matrix}\right)
\left(\begin{matrix}
a_0 \
a_1 \
\vdots \
a \
\end{matrix}\right)

\left(\begin{matrix}
y_0 \
y_1 \
\vdots \
y_n \
\end{matrix}\right)$$

$$\left(\begin{matrix} 1 & x_0 & x_0^2 & ... & x_0^n \\ 1 & x_1 & x_1^2 & ... & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & ... & x_n^n\\ \end{matrix}\right) \left(\begin{matrix} a_0 \\ a_1 \\ \vdots \\ a \\ \end{matrix}\right) = \left(\begin{matrix} y_0 \\ y_1 \\ \vdots \\ y_n \\ \end{matrix}\right) $$