Markdown “Conflicts” test
$_mC_n$ is an old symbol for $\binom{n}{m}$
$ wanna~~tie~~me~up\ or$ strike through me?
$a^{b^c}c_{b_a}$
$E=mc^2$
$a_b$ $a*b$
Delimeter test
$E=mc^2$ means \(m=\dfrac{E}{c^2}\)
To break, or not to break, that is the question:
$\left(\begin{matrix}1 & x_0 & x_0^2 & ... & x_0^n \\1 & x_1 & x_1^2 & ... & x_1^n \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & ... & x_n^n\\\end{matrix}\right)\left(\begin{matrix}a_0 \\a_1 \\\vdots \\a \\\end{matrix}\right)=\left(\begin{matrix}y_0 \\y_1 \\\vdots \\y_n \\\end{matrix}\right)$
$$\left(\begin{matrix}1 & x_0 & x_0^2 & ... & x_0^n \\1 & x_1 & x_1^2 & ... & x_1^n \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & ... & x_n^n\\\end{matrix}\right)\left(\begin{matrix}a_0 \\a_1 \\\vdots \\a \\\end{matrix}\right)=\left(\begin{matrix}y_0 \\y_1 \\\vdots \\y_n \\\end{matrix}\right)$$
$$\left(\begin{matrix}
1 & x_0 & x_0^2 & … & x_0^n \
1 & x_1 & x_1^2 & … & x_1^n \
\vdots & \vdots & \vdots & \ddots & \vdots \
1 & x_n & x_n^2 & … & x_n^n\
\end{matrix}\right)
\left(\begin{matrix}
a_0 \
a_1 \
\vdots \
a \
\end{matrix}\right)
\left(\begin{matrix}
y_0 \
y_1 \
\vdots \
y_n \
\end{matrix}\right)$$
$$\left(\begin{matrix}
1 & x_0 & x_0^2 & ... & x_0^n \\
1 & x_1 & x_1^2 & ... & x_1^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & ... & x_n^n\\
\end{matrix}\right)
\left(\begin{matrix}
a_0 \\
a_1 \\
\vdots \\
a \\
\end{matrix}\right)
=
\left(\begin{matrix}
y_0 \\
y_1 \\
\vdots \\
y_n \\
\end{matrix}\right)
$$